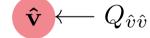
Nous avons réussi, nous avons des résidus et des paramètres compensées! (La dernière fois)

- Rappel: pourquoi compenser? (polycopié, page viii)
 - Optimiser les mesures (et les modèles)
 - Détecter une faute
 - Estimer la précision
 - Améliorer les résultats

Ensemble (pour observations) : « **ODE A** *LA JOIE*»)..

- Aujourd'hui : Comment estimer la précision ?
 - De paramètres ?

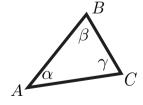
Des résidus ?



• Des observations compensées ? $\widehat{\ell} \longleftarrow Q_{\widehat{\ell}}$

(mardi) Ecart-type a posteriori ?

Comment les appliquer au problème connu? (p.ex. au triangle)



Compensation paramétrique

- 9. Estimation de <u>précision de paramètres</u>
 - Rappel des « ingrédients » au départ:
 - Solution pour les paramètres:

$$\delta \hat{\mathbf{x}} = \underbrace{\left(\mathbf{A}^T \mathbf{P} \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{P}}_{\mathbf{G}} \mathring{\mathbf{v}}$$

- ullet la variation de $u^{ullet} \longrightarrow \delta {f x}$ cause un changement dans les paramètres via ${f G}$
- Propagation par variance : $\mathbf{Q}_{\hat{x}\hat{x}} = \mathbf{G} \cdot \mathbf{Q}_{\ell\ell} \cdot \mathbf{G}^T$
 - En détail (P et N est symétrique)

$$\mathbf{Q}_{\hat{x}\hat{x}} = \left(\mathbf{A}^T \mathbf{P} \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{P} \cdot \underbrace{\mathbf{Q}_{\ell\ell}}_{\mathbf{P}^{-1}} \cdot \mathbf{P} \mathbf{A} \underbrace{\left(\mathbf{A}^T \mathbf{P} \mathbf{A}\right)^{-1}}_{\mathbf{N}^{-1}}$$

$$\mathbf{Q}_{\hat{x}\hat{x}} = \left(\mathbf{A}^T \mathbf{P} \mathbf{A}\right)^{-1} \tag{4.20}$$

$$\Longrightarrow \delta \mathbf{\hat{x}} = \mathbf{Q}_{\hat{x}\hat{x}} \mathbf{A}^T \mathbf{P} \mathbf{\mathring{v}}$$

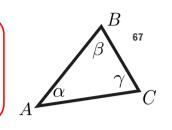
EPFL Exemple de triangle en compensation paramétrique

$$\ell_{\alpha} = 61.341 \text{ gon}$$

$$\ell_{\beta} = 99.658 \text{ gon}$$

$$\ell_{\gamma} = 38.986 \text{ gon}$$

$$A$$



- Numériquement

 - inverse

$$\mathbf{N}^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \mathbf{Q}_{\hat{x}\hat{x}}$$

lumériquement eq. normales
$$\mathbf{N} = \mathbf{A}^T \mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} \ell_{\alpha} \\ \ell_{\beta} \\ \ell_{\gamma} \end{bmatrix} - \underbrace{\begin{bmatrix} \cdot \\ \cdot \\ 200 \end{bmatrix}}_{\mathbf{a}_0} - \begin{bmatrix} v_{\alpha} \\ v_{\beta} \\ v_{\gamma} \end{bmatrix} = \underbrace{\begin{bmatrix} +1 & \cdot \\ \cdot & +1 \\ -1 & -1 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} \alpha \\ \beta \end{bmatrix}}_{\mathbf{x}}$$

- Interprétation
 - Diagonal

$$q_{\hat{\alpha}}^2 = q_{\hat{\beta}}^2 = q_{\hat{\gamma}}^2 = \frac{2}{3} \longrightarrow \sigma_{\hat{\alpha}} = \sigma_{\hat{\beta}} = \sigma_{\hat{\gamma}} = \sqrt{\frac{2}{3}} \, \sigma_{\ell_i}$$

Hors diagonal (p. ex.)

$$q_{\hat{\alpha}}q_{\hat{\beta}} = \frac{-1}{\sqrt{2}\sqrt{2}} = -\frac{1}{2} \longrightarrow -50\%$$

Pourquoi?

Si l'un des angles d'un triangle augmente d'un certain montant, les deux autres doivent être réduits (de la moitié de ce montant chacun) pour respecter la condition!

Compensation paramétrique

10. Estimation de <u>précision de résidus</u>

- Rappel des « ingrédients » au départ:
 - Solution pour les paramètres: $\hat{\mathbf{v}} = \ell [f(\hat{\mathbf{x}}) + \mathbf{A}\delta\mathbf{x}] = \mathring{\mathbf{v}} \mathbf{A}\delta\mathbf{x}$
 - Insérer $\Longrightarrow \delta \hat{\mathbf{x}} = \mathbf{Q}_{\hat{x}\hat{x}}\mathbf{A}^T\mathbf{P}\mathring{\mathbf{v}}$ dans la relation précédente, on obtient

$$\hat{\mathbf{v}} = \underbrace{\left[\mathbf{I} - \mathbf{A} \left(\mathbf{A}^T \mathbf{P} \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{P}\right]}_{\mathbf{H}} \mathring{\mathbf{v}}$$

Propagation par variance :

$$\mathbf{Q}_{\hat{x}\hat{x}} = \mathbf{H} \cdot \mathbf{Q}_{\ell\ell} \cdot \mathbf{H}^T$$

 Après substitution et multiplication, certains termes (longs) seront l'inverse d'autres termes (longs), ce qui produira une relation simple:

$$\mathbf{Q}_{\hat{v}\hat{v}} = \mathbf{Q}_{\ell\ell} - \mathbf{A}\mathbf{Q}_{xx}\mathbf{A}^T \tag{4.23}$$

Compensation paramétrique

10. Estimation de <u>précision de résidus</u>

- Autre raisonnement :
 - $\hat{\ell} = f(\hat{\mathbf{x}})$
 - $\blacksquare \Longrightarrow \delta \hat{\ell} = \mathbf{A} \cdot \delta \hat{\mathbf{x}}$
 - Propagation par variance $\Longrightarrow \mathbf{Q}_{\hat{\ell}\hat{\ell}} = \mathbf{A}^T \mathbf{Q}_{xx} \mathbf{A}^T$
- Relation avec la compensation conditionnelle :
 - Après substitution dans la relation précédente $\mathbf{Q}_{\hat{v}\hat{v}} = \mathbf{Q}_{\ell\ell} + \underbrace{\mathbf{A}\mathbf{Q}_{xx}\mathbf{A}^T}_{\mathbf{Q}_{\hat{z}\hat{x}}}$

$$\mathbf{Q}_{\ell\ell} = \mathbf{Q}_{\hat{v}\hat{v}} + \mathbf{Q}_{\hat{\ell}\hat{\ell}}$$

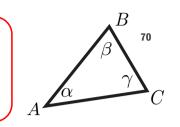
EPFL Exemple de triangle en compensation paramétrique

$$\ell_{\alpha} = 61.341 \, \text{gon}$$

$$\ell_{\beta} = 99.658 \, \text{gon}$$

$$\ell_{\gamma} = 38.986 \, \text{gon}$$

$$A^{2}$$



- Estimation de précision des résidus
 - Modèle stochastique $\ \mathbf{Q}_{\ell\ell} = \mathbf{I}_3$

$$\mathbf{Q}_{\hat{x}\hat{x}} = \frac{1}{3} \left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right] \qquad \mathbf{A} = \left[\begin{array}{cc} +1 & \cdot \\ \cdot & +1 \\ -1 & -1 \end{array} \right]$$

$$\mathbf{A} = \begin{bmatrix} +1 & \cdot \\ \cdot & +1 \\ -1 & -1 \end{bmatrix}$$

Cofacteurs des résidus compensés

$$\mathbf{Q}_{\hat{v}\hat{v}} = \mathbf{Q}_{\ell\ell} - \mathbf{A}\mathbf{Q}_{xx}\mathbf{A}^T$$

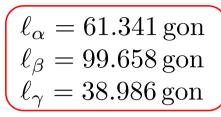
$$= \begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix} - \begin{bmatrix} +1 & \cdot \\ \cdot & +1 \\ -1 & -1 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} +1 & \cdot & -1 \\ \cdot & +1 & -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

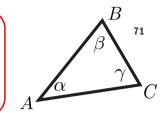
- Interprétation $\mathbf{Q}_{\hat{v}\hat{v}}$
 - $q_{\hat{v}_{\alpha}}^2 = q_{\hat{v}_{\beta}}^2 = q_{\hat{v}_{\gamma}}^2 = \frac{1}{3} \longrightarrow \sigma_{\hat{v}_{\alpha}} = \sigma_{\hat{v}_{\beta}} = \sigma_{\hat{v}_{\gamma}} \frac{1}{\sqrt{3}}$
 - Hors diagonal (p. ex.)

$$q_{\hat{v}_{\alpha}}q_{\hat{v}_{\beta}} = \frac{1}{\sqrt{1}\sqrt{1}} = 1 \longrightarrow 100\%$$

• Les résidus compensés sont égaux, dont entièrement corrélés.

Exemple de triangle en compensation paramétrique $\begin{pmatrix} \ell_{\alpha} = 61.341 \, \mathrm{gon} \\ \ell_{\beta} = 99.658 \, \mathrm{gon} \\ \ell_{\gamma} = 38.986 \, \mathrm{gon} \end{pmatrix}_{A}$ **EPFL**





- Estimation de précision des observations compensées
 - Cofacteurs des observations compensées

$$\mathbf{Q}_{\hat{\ell}\hat{\ell}} = \mathbf{A}\mathbf{Q}_{xx}\mathbf{A}^T$$

$$= \begin{bmatrix} +1 & \cdot \\ \cdot & +1 \\ -1 & -1 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} +1 & \cdot & -1 \\ \cdot & +1 & -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

• Interprétation $\mathbf{Q}_{\hat{\rho}\hat{\rho}}$

$$\quad \text{Diagonal} \quad q^2_{\hat{v}_\alpha} = q^2_{\hat{v}_\beta} = q^2_{\hat{v}_\gamma} = \tfrac{1}{3} \qquad \longrightarrow \sigma_{\hat{v}_\alpha} = \sigma_{\hat{v}_\beta} = \sigma_{\hat{v}_\gamma} \tfrac{1}{\sqrt{3}}$$

• Hors diagonal (p. ex.)
$$q_{\hat{v}_{\alpha}}q_{\hat{v}_{\beta}}=\frac{-1}{\sqrt{2}\sqrt{2}}=-\frac{1}{2}\longrightarrow -50\%$$

Pourquoi?

EPFL Résumé

- Estimation de précision (en peut différemment que dans le Chap. 4.5)
 - A partir d'une solution pour:
 - Les paramètres compensés
 - Les résidus compensés
 - Nous avons appliqué nos connaissances acquises (dans Block I de ME) pour obtenir des nouvelles relations permettant d'estimer
 - Précision des paramètres
 - Précision des résidus compensés
 - Précision des observations compensées
 - Mardi
 - Écarte type a posteriori $\hat{\sigma}_0$ et analyse de résultats (4.5 et 4.6 lire avant, 2p.)
 - Quotient d'erreur moyenne $\hat{\sigma}_0/\sigma_0$
 - D'avantage sur l'itération (évent. l'analyse de résultats)